

VISHVAS FOUNDATION'S (R)

VISHVAS CAREER ACADEMY

<u>Basava Nagar, Burnapur Road, Vijayapura. 586104</u>

WAVES & OSCILLATIONS

	▲ WAVES ■ Definition: A wave is a disturbance that travels through space or a
 Free Oscillations: Definition: Oscillations without external force or energy loss. Example: Ideal pendulum in vacuum. Note: Rare in nature. Damped Oscillations: Definition: Oscillations whose amplitude decreases over time due to energy dissipation (e.g., friction). Example: Swing slowing down. UPSC Use: Found in car suspension systems. Forced Oscillations: Definition: Oscillations under continuous external periodic force. Example: Children being pushed on a swing. 	medium, transferring energy from one point to another without the transport of matter.
	 Classification of Waves A. Mechanical Waves Definition: Require a material medium to propagate. Examples: Sound waves, water waves, seismic waves. Important: Cannot travel through vacuum.
	 B. Electromagnetic Waves Definition: Oscillations of electric and magnetic fields
	 that travel through vacuum and media. <i>Examples:</i> Light, X-rays, radio waves. <i>Key Point:</i> Do not require a medium.
	 C. Matter Waves (Quantum Physics) Definition: Waves associated with particles (as per de Broglie hypothesis). Example: Electron wave in an atom. Note: Important in quantum theory, not classical waves.
 Simple Harmonic Motion (SHM) Definition: A type of periodic motion where restoring force is directly proportional to displacement and opposite in direction: F=-kx Key Features: Displacement follows sine/cosine function. Velocity and acceleration vary with time. Energy continuously shifts between kinetic and potential.	 Wave Properties – Key Terms Wavelength (λ): Distance between two consecutive points in phase. Frequency (f): Number of oscillations per second. Amplitude (A): Maximum displacement from equilibrium. Time Period (T): Time to complete one oscillation. Wave Speed (v): v=fλv = f \lambdav=fλ Phase: Describes the stage of oscillation at a point.
• Displacement: $x(t) = A \sin(\omega t + \phi)$ • Velocity: $v(t) = A\omega \cos(\omega t + \phi)$ • Acceleration: $a(t) = -A\omega^2 \sin(\omega t + \phi)$ • Energy in SHM:	 Important Wave Phenomena Reflection: Bouncing back of waves. Refraction: Bending of waves at interface between two media. Diffraction: Bending of waves around corners. Interference: Superposition of two waves. Polarization: Restricting vibration to one direction (only for transverse waves). Doppler Effect: Change in observed frequency due to
 Total Energy (E): $\frac{1}{2}kA^2$ Kinetic Energy: $\frac{1}{2}mv^2$ Potential Energy: $\frac{1}{2}kx^2$ 	wotion of source or observer.
 Potential Energy: ¹/₂kx² Energy remains constant, just transforms between KE and PE. 	 Tacoma Bridge Collapse (1940): Classic example of resonance. Earthquake Seismology: Use of P and S waves to understand Earth's interior. Optical Fiber Communication: Uses total internal reflection – a wave-based principle. Depaler Padar: Used in weather forecasting, military.

- Doppler Radar: Used in weather forecasting, military surveillance.
- Microwave Ovens: Use resonance of water molecule